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Abstract. Hyperspherical coordinates are applied to the bound states of two-dimensional charged
excitons. The Schrödinger equation is solved by two different methods, i.e., by a direct expansion in
hyperspherical harmonics and by separating it into a radial equation and an angular equation on the
basis of the adiabatic approximation. Our main findings are: (a) the low-lying eigenenergies scale
nearly linearly with the reduced mass of the exciton; (b) the adiabatic approximation produces
a ground-state energy of −1.1384 au, which compares well to −1.1164 au, obtained by hyper-
spherical expansion in the positronium limit.

1. Introduction

Two-dimensional charged excitons in semiconducting quantum wells have been the subject of
a great deal of study recently [1–9]. A charged exciton comprises two electrons and one hole
(X−) or two holes and one electron (X+). Charged excitons are the analogues of positronium
ions, known in atomic physics. Already, several variational calculations have been carried out
to evaluate the binding energies of charged excitons. Variational calculations can be made
accurate by the use of several hundred variational parameters [10]. However, they shed little
light on the nature of the wavefunction, and probing the excited states is problematic.

The solution of three-body problems with interactions via the long-range Coulomb force
is not an easy task. A comprehensive understanding of the two-electron atomic system was
only achieved in recent years [11]. Hyperspherical coordinates provide a suitable framework
for understanding the problem. In this paper, we employ this framework to study not only
the ground state but also the excited states. Our following discussion is specifically for X−.
Results for X+ can be obtained by replacing the electrons with holes and the hole with an
electron.

2. The Schrödinger equation in hyperspherical coordinates

For one hole and two electrons moving in two space dimensions, the Schrödinger equation is[
p2

1

2me

+
p2

2

2me

+
p2

3

2mh

+
e2

4πε

(
1

|z12| − 1

|z13| − 1

|z23|
)]

�(z1, z2, z3) = E�(z1, z2, z3) (1)
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where z1 and z2 are respectively the imaginary positions of electrons 1 and 2 in the x–y plane;
z3 is the imaginary position of the hole. When effective atomic units (au) are used, i.e., the
unit of energy is me(e

2/4πεh̄)2 and the unit of length is 4πεh̄2/(mee
2), equation (1) can be

rewritten more succinctly as[
−1

2
(∇2

1 + ∇2
2 + σ∇2

3 ) +
1

|z12| − 1

|z13| − 1

|z23|
]
�(z1, z2, z3) = E�(z1, z2, z3) (2)

where σ = me/mh.
To separate the trivial centre-of-mass motion from the relative motion, we introduce the

centre-of-mass and relative coordinates to describe the system. For a three-body system, there
are three different sets of relative coordinates, {η(j)1 , η

(j)

2 } (j = a, b, c), defined by
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where m1, m2 and m3 are masses of particles 1, 2, and 3 respectively. m1 = m2 = me and
m3 = mh. The corresponding hyperspherical coordinates are defined by

η
(j)

1 = r cosφ(j) exp(iϕ(j)1 ) η
(j)

2 = r sin φ(j) exp(iϕ(j)2 )

(0 � r < ∞; 0 � φ(j) � π/2; 0 � ϕ
(j)

1 , ϕ
(j)

2 � 2π; j = a, b, c)
(4)

where φ(j) is the hyperangle; ϕ(j)1 and ϕ
(j)

2 are respectively the polar angles of η(j)1 and η
(j)

2 .
The hyperradius r is given by

r =
√

|η(a)1 |2 + |η(a)2 |2 =
√

|η(b)1 |2 + |η(b)2 |2 =
√

|η(c)1 |2 + |η(c)2 |2 (5)

which measures the size of the system; it is independent of the choice of relative coordinates.
Since most of our following discussion holds for any set of coordinates, the superscript (j) of
the angular variables {φ(j), ϕ

(j)

1 , ϕ
(j)

2 } will be shown only when necessary.
With an arbitrary set of hyperspherical coordinates {r, φ, ϕ1, ϕ2}, the Schrödinger equation

for the relative motion reads[
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is the grand orbital operator, �̂(ϕ1) = −i ∂/∂ϕ1, etc, and

C(�) =
√

1

2

1

cosφ(a)
−

√
1

1 + σ
cosφ(b) −

√
1

1 + σ
cosφ(c) (8)

is the fictitious electric charge. � stands for a collective set of the angular variables {φ, ϕ1, ϕ2}.
The common eigenfunctions of the operators {�2(�), �̂(ϕ1), �̂(ϕ2)}, called the hyper-

spherical harmonics Y{νl1l2}(�), are given by

Y{νl1l2}(�) = #l1l2
ν P l1l2

ν (φ) exp[i(l1ϕ1 + l2ϕ2)] (9)

where #l1l2
ν is a normalization constant and P l1l2

ν is a Jacobi polynomial:

#l1l2
ν =

√
(2ν + |l1| + |l2| + 1)ν!(ν + |l1| + |l2|)!

2π2(ν + |l1|)!(ν + |l2|)! (10)

P l1l2
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k=0

(−)ν−k

(
ν + |l2|

k

)(
ν + |l1|
ν − k

)
(cosφ)2k+|l1|(sin φ)2(ν−k)+|l2|. (11)

Y{νl1l2}(�) satisfy the eigenequations

�2(�)Y{νl1l2}(�) = λ(λ + 2)Y{νl1l2}(�)

�̂(ϕ1)Y{νl1l2}(�) = l1Y{νl1l2}(�)

�̂(ϕ2)Y{νl1l2}(�) = l2Y{νl1l2}(�)

(12)

with λ = 2ν + |l1| + |l2|. For compactness we will use the symbol [λ] to denote the full set of
quantum numbers {ν, l1, l2} in the following. With coordinate set (a), imposing the particle
exchange symmetry on Y[λ](�

(a)) is straightforward, i.e., l1 = odd for spin-triplet states and
l1 = even for spin-singlet states; with coordinate set (b) and set (c), imposing the exchange
symmetry is more complicated [12].

3. A direct diagonalization approach

To obtain the eigenenergies and eigenfunctions from equation (6), we expand the trial wave-
function � in terms of a complete set

{
(n,[λ](r,�)

}
[13, 14]:

�(r,�) =
∑
n,[λ]

Cn,[λ](n,[λ](r,�) (13)

where

(n,[λ](r,�) =
[

β4n!

(n + 3)!

]1/2

L(3)
n (βr) exp(−βr/2)Y[λ](�). (14)

Here L
(γ )
n are Laguerre polynomials and β is a variational parameter used to minimize the

ground-state energy. (n,[λ](r,�) fulfils the normalization condition∫ [
(n,[λ](r,�)

]∗
(n′,[λ′](r,�)r

3 dr d� = δn,n′δ[λ],[λ′] (15)

where δ[λ],[λ′] = δν,ν ′δl1,l′1δl2,l
′
2
, d� = sin φ cosφ dφ dϕ1 dϕ2.

Substituting equations (13) into (6), we obtain a matrix eigenequation

H C = EC (16)

where C is a one-column matrix of Cn,[λ], and H is a square matrix of the Hamiltonian

H = −1
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r

∂
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)
+
C(�)

r
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whose matrix elements can be evaluated analytically by transforming the angular variables of
Y[λ] from one set into another.

To gain insight into the role played by the variational parameterβ, in figure 1 we present the
ground-state energies calculated with a number ofβ-values in the range 1 � β � 5; the number
of basis elements in the Laguerre polynomials used in the calculations are NLP = 1, 2, 3, 4, 5,
and 6, in the positronium limit (σ = 1). Figure 1 shows the existence of an optimized β-value
which minimizes the ground-state energy. The optimized β-value increases slightly as LLP

increases. It is clear that when NLP � 5, the calculated ground-state energy converges to
a value which is nearly independent of β over a broad range. A more detailed observation
reveals that whenLLP is sufficiently large, the optimized β-value can be expressed as 2

√
2|E|.

This coincides with the asymptotic behaviour of the wavefunction � in equation (6), where
� → exp[−(2|E|)1/2r], as r → ∞.

Figure 1. The calculated ground-state energies of a negatively charged exciton as functions of the
variational parameter β. The number attached to each curve is the number of Laguerre polynomials
used in the calculation. The number of hyperspherical harmonics is fixed at NHH = 144.

In table 1, the ground-state energies calculated with different numbers of basis elements
are presented to demonstrate the convergence pattern of the expansion in equation (13). When
the maximum number of Laguerre polynomials used is NLP = 8, the error caused by the
truncation in the Laguerre polynomial expansion occurs in the seventh significant number.
When the maximum number of hyperspherical harmonics used is NHH = 256, the error
caused by the truncation of the hyperspherical expansion occurs in the fifth significant figure.
Therefore the convergence in the expansion of hyperspherical harmonics is extremely slow
compared to that of the radial expansion in Laguerre polynomials.

In figure 2, the four lowest eigenenergies, divided by the absolute ground-state energy of
an exciton, are presented as functions of the mass ratio σ . These are the two lowest-energy
spin-singlet states with zero angular momentum (denoted by 1S1 and 1S2 respectively), and the
two lowest-energy spin-triplet states with zero angular momentum (denoted by 3S1 and 3S2
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Table 1. Ground-state (1S1) energies of X− in the limit of σ = 1 obtained by diagonalizing
equation (16). NLP is the number of generalized Laguerre polynomials. NHH is the number of
hyperspherical harmonics. λm is the corresponding maximum λ.

NLP

λm(NHH ) 3 4 5 6 7 8

30(72) −1.1031896 −1.1046560 −1.1048194 −1.1048297 −1.1048290 −1.1048283
32(81) −1.1045045 −1.1060808 −1.1062701 −1.1062843 −1.1062839 −1.1062833
34 (90) −1.1057206 −1.1074068 −1.1076238 −1.1076425 −1.1076427 −1.1076421
36(100) −1.1070096 −1.1088236 −1.1090748 −1.1090998 −1.1091007 −1.1091002
38(110) −1.1078493 −1.1097472 −1.1100224 −1.1100520 −1.1100536 −1.1100532
40(121) −1.1086389 −1.1106203 −1.1109203 −1.1109551 −1.1109574 −1.1109571
42(132) −1.1094798 −1.1115561 −1.1118857 −1.1119270 −1.1119305 −1.1119302
44(144) −1.1100476 −1.1121878 −1.1125381 −1.1125842 −1.1125885 −1.1125884
46(156) −1.1105885 −1.1127921 −1.1131636 −1.1132149 −1.1132201 −1.1132201
48(169) −1.1111660 −1.1134410 −1.1138370 −1.1138946 −1.1139011 −1.1139012
50(182) −1.1115676 −1.1138917 −1.1143051 −1.1143673 −1.1143747 −1.1143750
52(196) −1.1119534 −1.1143263 −1.1147573 −1.1148244 −1.1148328 −1.1148333
54(210) −1.1123665 −1.1147938 −1.1152449 −1.1153177 −1.1153273 −1.1153281
56(225) −1.1126607 −1.1151262 −1.1155918 −1.1156688 −1.1156794 −1.1156803
58(240) −1.1129455 −1.1154490 −1.1159292 −1.1160105 −1.1160221 −1.1160233
60(256) −1.1132508 −1.1157965 −1.1162931 −1.1163795 −1.1163924 −1.1163937

respectively). It turns out that, to a good approximation, the eigenenergies of these states scale
linearly with the ground-state energy of the exciton. To our knowledge, this scaling behaviour
was first discovered by Lin [11], for the ground state of 3D Coulombic three-body systems
with two identical particles. We confirm here that this is also true for the ground state and the
low-lying excited states of 2D systems.

4. The adiabatic approximation

As is shown above, the convergence of the expansion in hyperspherical harmonics is extremely
slow. To overcome this difficulty, in this section, we solve the Schrödinger equation (6) by
means of a channel expansion [15]:

�(r,�) = r−3/2
∑
µ

Fµ(r)φµ(r,�) (18)

where µ is the channel index. The channel wavefunctions φµ(r,�) are obtained from the
eigenvalue problem

Ûφµ(r,�) = Uµ(r)φµ(r,�) (19)

where

Û = 1

2

�2 + 3/4

r2
+
C(�)

r
. (20)

Equation (19) is equivalent to solving the Schrödinger equation at constant values of r ,
neglecting the derivatives with respect to r . Therefore, the channel wavefunctions and the
channel potential Uµ(r) depend parametrically on r .

Substituting equation (18) into (6), multiplying equation (6) by
[
φµ(r,�)

]∗
from the left,

integrating over the angular variables, and making use of equation (19), we obtain a set of
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Figure 2. Low-lying eigenenergies of a negatively charged exciton, divided by the absolute ground-
state energy of the exciton, ε00 = −2m1m3/(m1 + m3) = −2/(1 + σ), are presented as functions
of the mass ratio σ = me/mh. 1S1 and 1S2 (3S1 and 3S2) denote the two lowest eigenenergy states
with L = 0 and Sspin = 0 (Sspin = 1).

coupled equations for determining {Fµ(r)}:

−1

2

d2Fµ(r)

dr2
+ Uµ(r)Fµ(r) +

∑
µ′

Wµ,µ′(r)Fµ′(r) = EFµ(r) (21)

where

Wµ,µ′(r) = −1

2
〈φµ(r,�)|∂2/∂r2|φµ′(r,�)〉 − 〈φµ(r,�)|∂/∂r|φµ′(r,�)〉 ∂/∂r (22)

are the coupling matrix elements.
Since the channel wavefunctions form a complete set, up till now the discussion has been

exact. The adiabatic approximation in this context assumes that the channel wavefunctions
φµ(r,�) show only a slow variation with respect to r; that is, to the first order of approx-
imation, we can neglect the channel couplings given by equation (22). In this paper, we
confine ourselves to this approximation. The total wavefunction then factorizes according to

�ad
µ (r,�) = Fad

µ (r)φµ(r,�). (23)

The information regarding the particle correlation is included in the channel functionsφµ(r,�).
The radial wavefunctions Fad

µ (r) and the eigenenergies can be obtained by solving the
decoupled equations

−1

2

d2Fad
µ (r)

dr2
+ Uµ(r)F

ad
µ (r) = EFad

µ (r). (24)

The channel potentials Uµ(r) then have the physical meaning of potentials which control the
motion along the coordinate r . In particular, the excited states in a channel represent the
excitation of a breathing mode in the system.
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As a first step of the approach, we find the channel wavefunctions and channel potentials
numerically. In the ranges of small r , Û is dominated by the term (�2 + 3/4)/r2, which
describes the centrifugal barrier. The channel wavefunctions are most appropriately expanded
in terms of the hyperspherical harmonics:

φµ(r,�) =
∑
[λ]

c
µ
[λ](r)Y[λ](�). (25)

In particular, the channel wavefunctionφµ(r,�) converges to a single hyperspherical harmonic
Y[λ](�), and the corresponding channel potential Uµ(r) converges to [λ(λ + 2) + 3/4]/r2 as
r → 0.

In the ranges of large r , the Coulomb term C(�)/r becomes dominant. The channel
wavefunctions become localized in the regions where C(�) is minimized (see figure 3). This
corresponds to the splittings of the trion into an exciton and a free electron, i.e.,

φµ(r,�) → ψnl1l2(r,�) = 1√
2

[
φnl1(η

(b)
1 ) exp(il2ϕ

(b)
2 )± φnl1(η

(c)
1 ) exp(il2ϕ

(c)
2 )

]
(26)

Uµ(r) → εnl = − 1

2(1 + σ)(n + |l| + 1/2)2
(27)

where φnl is an eigenfunction of an exciton, n is the radial quantum number of a hydrogenic
wavefunction, and εnl is the corresponding eigenenergy. ‘+’ is for the spatially symmetric
states (spin-singlet states) and ‘−’ is for the spatially antisymmetric states (spin triplet states).
The wavefunctions given by equation (26) are difficult to reproduce with a finite set of
hyperspherical harmonics. This leads to the slow convergence of the hyperspherical expansion
in the above section. It is then most appropriate to expand the channel wavefunctions in terms

Figure 3. The fictitious electric charge C(�) is presented as a function of θ(a) and φ(a).
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of ψnl1l2(r,�):

φµ(r,�) =
∑
nl1l2

c
µ

nl1l2
(r)ψnl1l2(r,�). (28)

The channel wavefunctions and channel potentials, calculated with two different basis sets,
are matched smoothly at some value of rµ0.

In figure 4, some low-lying channel potentials are presented for spin-singlet states with
zero orbital angular momentum and for systems with σ = 1. The lowest curve, labelled by
µ = 0, is significantly lower than the other curves. It converges to the ground-state energy of
an exciton, ε00 = −1, as r → ∞. In the ranges of small r , it shows a potential well which
may support bound states against dissociation.

Figure 4. Channel potentials for states 1S of systems with σ = 1. The lowest curve converges to
the ground state of an exciton. Each of the other curves converges to an excited state of an exciton.
The horizontal line gives the bound state supported by the lowest curve, which corresponds to the
ground state of the system.

With the channel potentials as the input, we solve equation (24) by expanding Fad
µ (r) in

terms of the Laguerre polynomials. With the lowest channel potential we obtain a single bound
state with eigenenergy −1.1384, which compares well to −1.1164, the ground-state energy
obtained in section 3.

In figure 5, we present the channel potentials for spin-triplet states with zero orbital angular
momentum. The lowest curve, which converges to −1, is also significantly lower than the other
curves, but the potential well that it shows is too shallow to support any stable bound state
against dissociation. In figure 2, all of the spin-triplet states lie beyond the ground state of an
exciton in energy. Hence both methods predict no stable bound states with triplet spin.

5. Discussion

In this article, we have used two different methods to evaluate the low-lying quantum spectrum
of a 2D Coulombic three-body system. The expansion of the trial wavefunction into a series of
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Figure 5. As figure 4, but for 3S states. The lowest curve shows a shallow well insufficient to
support a bound state.

products of Laguerre polynomials and hyperspherical harmonics is simple and straightforward
for evaluating the eigenfunctions and eigenenergies but suffers from slow convergence in the
hyperspherical expansion. The convergence may improve if hydrogenic wavefunctions are
included as part of the basis functions. In the adiabatic channel approach, the hyperradius r
is treated as a parameter. In the ranges of small r , the wavefunction converges to a hyper-
spherical harmonic, while in the ranges of large r the wavefunction converges to a hydrogenic
wavefunction. Mixings of basis functions occur only in the intermediate region. Hence
accurate adiabatic channel potential curves can now be obtained. The adiabatic approach is
useful if the mixings of different channels are small. This occurs when a channel potential
curve is well separated from the others—such as the lowest curves in figures 4 and 5. In our
present system, only the ground state is found to be stable against dissociation. In systems
with strong electron–phonon interaction or in a strong magnetic field, more stable bound states
can appear. Investigating the high-lying states then becomes practically important.
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